Circuit Design with VHDL e 3™ edition e Volnei A. Pedroni  MIT Press e April 2020

Errata and Clarifications (rev.1)

. ERRATA
Page Error
87 In the transitions of figure 3.19a, it should be j instead of t.

Below, the word “is” is missing before the parenthesis:
8.2.2 Enumeration Types

195 An enumeration type consists of a list of symbolic values. It can be declared as follows:
type type_nameh(type_values_list);
i |

291 In process P2, the line count <= std_logic_vector(to unsigned(i, BITS)); should be added between lines 29 and 30.
306 In process P1, the line is_max <= '@"'; should be added between lines 10 and 11.
320 In example 13.3, the number of bits of figure 2.35a (page 63) were employed, which are for the worst-case

scenario, i.e., for arbitrary unsigned values. That was fixed and clarified in sections 3.1 and 3.2 ahead.
334 In figures 13.7a-b, it should be go-g, and go-q4, respectively.

Below, it should be “functions”, not “variables”:
359 14.4 Procedure

Compared to functions, procedures are used to implement multi-output problems. More-

over, procedures are stand-alone statements, while[variables Jare used as part of expressions.
403 About Mealy machines: See in the Clarifications (next table), the important Note to be included in figure 15.4.
421 In exercise 16.2, relax the requirement “dout must be guaranteed to be glitch free.”
458 In line 105 of code, it should be when 3 to 5
534 In line 9 of both codes (for character 6), it should be "0100000".

. CLARIFICATIONS

Page

Comment

63

The number of bits in figure 2.35a are for the worst-case scenario, which is for arbitrary unsigned values. For
signed values, with arbitrary or fixed coefficients, and for chain- or tree-type architecture, see section 3.1 ahead.

89

Figure 3.21 shows an arbiter for n=3 clients. The one-clock-period latency can be easily eliminated, but for higher
n (=8, for example), the number of transitions becomes exceedingly large (see the new Arbiter exercise in
Exercises: Comments and Extensions, at vhdl.us).

171

Table 7.8 includes all functions available in the math_real package, but it has a line repeated (**).
There is also a procedure in that package, called uniform, useful for generating random numbers in simulation.

320

See the comments regarding example 13.3 in sections 3.1 and 3.2 ahead.

347

In exercise 13.37, the number of coefficients is 11 (so M=10) and the number of bits in the input and in the
coefficients are N,=N,=4. The filter is signed, and the coefficients, being programmable, are arbitrary (as opposed
to fixed). The number of bits along the chain (lower part of figure 2.36)

is Nj =Ny +Np —1+[ log, (i+2)| (0<i<M). In the simulations, use the same coefficient values of example 13.3.

Suggestions:

Solution 2: Solve this exercise also for the tree-type architecture (figure 2.35b). The equations for the number of
bits are in the table of section 3.1 below.

Solution 3: Solve this exercise also for the linear-phase case (figure 2.35d).

374

In topic (3) of page 374, an important recommendation for Mealy is missing; it is for the implementation of
recursive machines without latency, which leads to the construction of figure 15.4c.

403

To make section 15.6 clearer, include in figure 15.4 the Note in green below.




Circuit Design with VHDL e 3™ edition e Volnei A. Pedroni  MIT Press e April 2020

(a) Default and - FSM —
reference ! (Mooare) 1

b) = TS ! !

! (Moore) ! !

Note 1 : :

(€) —s  FSM : 5

i (Mealy) i '

E — '

: (mixed) ! :

time » 1 Tei +— 1% Toi —

Suggested templates
. . Machine category
Registered Total Figure | Machine
outputs time above type (1 (2) (3.1) (3-2)
Regular Timed Recursive | Recursive-timed
None 1% Tew (a) Moore T1orT2 T10 -— —
Al 2% Tone (b) Moore T3orT4 T11 - -
1% Tone (c) Mealy T8orT9 T14 T8orT9 T14
Some 1% Tew (d) Mixed T50rT6 T12 T5orT6 T12
Mote 1: For the case in figure (c), with the output register removed, use template T7 if Regular or T13 if Timed.

3. ADDITIONAL DETAILS

3.1 Number of bits in signed multiplier-adder arrays

In example 13.3 (page 320), the number of bits of figure 2.35a (page 63) were employed, which are for the worst-case
scenario, i.e., for arbitrary unsigned values. The numeric values illustrating the implementation, however, include positive and
negative coefficients, and they are stored in ROM-like memory, so a signed filter with fixed coefficients is in principle implied.
This section presents the equations for all signed cases, followed by the adjusted code for example 13.3 in the next section.

The following notation is used in the equations:

M = Filter order (= number of coefficients — 1)

N, = Number of bits in the input signal (x)

N, = Number of bits in the filter coefficients (b;, 0 <i< M)

N, = Number of bits in the output signal (y)

L = Number of sum layers in the tree-type array (L=rlog2(M+1)—|
i = Chain stage index, horizontal (i=0 to M, Fig. 2.35a)

j =Tree layer index, vertical (j=0 to L, Fig. 2.35b)

Minimum number of bits in signed multiplier-adder arrays (Fig. 2.35 of book).

Architecture | Polarity Coeff. Position Equations #
Bits along Ni = Ny + Np ~1+[log, (i +2)] (0<i<M) (1)
Arbitrary the chain
Bits at
Ny =Ny +Np—1+]|log, (M +2
the output y = x* b ( 92 ( )-‘ (2)
{NX+Nb—1+[|og2(i+z)] while Nj <Ny, a)
= .
in- Else N, (equation below
::Fri‘ga"; ;‘;’S Signed Bits along y (¢ )
.2, the chain (Iogz (|bmm|)—‘ +1 if |bmin| > Brmax
Fixed Where N = (4)
100, (B +1) |+ 1 if [Bysin| < brna
Bits at M
the output Ny =Ny + {Iog2 (iz(:)|bi|+ 1ﬂ (5)
Tree-type Signed Arbitrary tB}:testarI:er'ng Nj=Ny+Np+] (0 <j<L L =(|092 M +1)—‘) (6)




Circuit Design with VHDL e 3™ edition e Volnei A. Pedroni  MIT Press e April 2020

(Fig. 2.35b) Bits at N - Ny +Np +L if M+1isa power-of-two
the output YNy +Np +L-1 otherwise 7
Ny +Np+j whileNj <Ny (0<j<L) g
Bits along J 7| Else Ny (equation below) (&)
the tree
Fixed Where Ny is given by eq. (4)
Bits at M
Ny =N | i 1
the output yo X J 002 (%'b' |] " w ©)

3.2 Reviewed version of Example 13.3. FIR filter with fixed coefficients

We can now make use of the table above to adjust the circuit of example 13.3 to operate as signed, with fixed coefficients, in
a chain-type architecture. The right equations are (3)-(5). From (4): Ny=4; from (3), for i=0: Ny=8; and from (5): N,=10.
Therefore, the number of bits along the chain starts with 8 and can be stopped when it reaches 10. This modification (which is
the only real modification) is in line 11 of the code below. Lines 9-10 are just a splitting of the original line 10 to make it clear
that N, and N, can be different. The rest are just adjustments to comply with the new parameter names.

00 NO U WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fir_filter is
generic (

NUM_COEF: natural := 11; --number of filter coefficients
BITS_COEF: natural := 4; --number of bits in the coefficients
BITS_IN: natural := 4; --number of bits in the input signal
BITS_OUT: natural := 10); --number of bits in the output signal

port (
clk, rst: in std_logic;
x: in std_logic_vector(BITS_IN-1 downto 9);
y: out std_logic_vector(BITS_OUT-1 downto 0));
end entity;

architecture fixed_coeff_chain_type of fir_filter is

--Filter coefficients (ROM-type memory with integer as base type):

type int_array is array (0@ to NUM_COEF-1) of integer range
-2%*(BITS_COEF-1) to 2**(BITS_COEF-1)-1;

constant coef: int_array := (-8, -5, -5, -1, 1, 2, 2, 3, 5, 7, 7);

--Internal signals (arrays with signed as base type):

type signed_array is array (natural range <>) of signed;

signal shift_reg: signed_array(1 to NUM_COEF-1)(BITS_COEF-1 downto ©);
signal prod: signed_array(© to NUM_COEF-1)(BITS_IN+BITS_COEF-1 downto ©);
signal sum: signed_array(@ to NUM_COEF-1)(BITS_OUT-1 downto 0);

begin

--Shift register:
process (clk, rst)
begin
if rst then
shift_reg <= (others => (others => '0'));
elsif rising_edge(clk) then
shift_reg <= signed(x) & shift_reg(l1 to NUM_COEF-2);
end if;
end process;

--Multipliers:
prod(@) <= coef(0@) * signed(x);
mult: for i in 1 to NUM_COEF-1 generate
prod(i) <= to_signed(coef(i), BITS_COEF) * shift_reg(i);
end generate;

--Adder array:
sum(@) <= resize(prod(®), BITS_OUT);
adder: for i in 1 to NUM_COEF-1 generate



Circuit Design with VHDL e 3™ edition e Volnei A. Pedroni  MIT Press e April 2020

52
53
54
55
56
57

sum(i) <= sum(i-1) + prod(i);
end generate;
y <= std_logic_vector(sum(NUM_COEF-1));

end architecture;



